Abstract
Neural networks notoriously suffer from the problem of catastrophic forgetting, the phenomenon of forgetting the past knowledge when acquiring new knowledge. Overcoming catastrophic forgetting is of significant importance to emulate the process of “incremental learning”, where the model
is capable of learning from sequential experience in an efficient and robust way. State-of-the-art techniques for incremental learning make use of knowledge distillation towards preventing catastrophic forgetting. Therein, one updates the
network while ensuring that the network’s responses to previously seen concepts remain stable throughout updates. This in practice is done by minimizing the dissimilarity between current and previous responses of the network one way or another. Our work contributes a novel method to the arsenal of distillation techniques. In contrast to the previous state of the art, we propose to firstly construct low-dimensional manifolds for previous and current responses and minimize the dissimilarity between the responses along the geodesic connecting the manifolds. This induces a more formidable
knowledge distillation with smooth properties which preserves the past knowledge more efficiently as observed by our comprehensive empirical study.
is capable of learning from sequential experience in an efficient and robust way. State-of-the-art techniques for incremental learning make use of knowledge distillation towards preventing catastrophic forgetting. Therein, one updates the
network while ensuring that the network’s responses to previously seen concepts remain stable throughout updates. This in practice is done by minimizing the dissimilarity between current and previous responses of the network one way or another. Our work contributes a novel method to the arsenal of distillation techniques. In contrast to the previous state of the art, we propose to firstly construct low-dimensional manifolds for previous and current responses and minimize the dissimilarity between the responses along the geodesic connecting the manifolds. This induces a more formidable
knowledge distillation with smooth properties which preserves the past knowledge more efficiently as observed by our comprehensive empirical study.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
Editors | Margaux Masson-Forsythe, Eric Mortensen |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 1591-1600 |
Number of pages | 10 |
ISBN (Electronic) | 9781665445092 |
ISBN (Print) | 9781665445108 |
DOIs | |
Publication status | Published - 2021 |
Event | IEEE Conference on Computer Vision and Pattern Recognition 2021 - Online, Virtual, Online, United States of America Duration: 19 Jun 2021 → 25 Jun 2021 https://cvpr2021.thecvf.com/ (Website) https://ieeexplore.ieee.org/xpl/conhome/9577055/proceeding (Proceedings) |
Publication series
Name | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
---|---|
Publisher | The Institute of Electrical and Electronics Engineers, Inc. |
ISSN (Print) | 1063-6919 |
ISSN (Electronic) | 2575-7075 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition 2021 |
---|---|
Abbreviated title | CVPR 2021 |
Country/Territory | United States of America |
City | Virtual, Online |
Period | 19/06/21 → 25/06/21 |
Internet address |
|