Ohmic heating of dairy fluids - Effects of local electric field on temperature distribution

Heng Jin Tham, Xiao Dong Chen, Brent R Young, Geoffrey Duffy

Research output: Contribution to journalArticleResearchpeer-review

4 Citations (Scopus)


This paper presents the heat transfer model of a continuous flow ohmic heating process. The model fluid used was a mixture of reconstituted skimmed milk and whey protein concentrate solution. Two-dimensional numerical simulations of an annular ohmic heater were performed using a general purpose partial differential equation solver, FlexPDE. The momentum, energy, and electrical equations were solved for a laminar flow regime. Two models were used to determine the volumetric heating rate, one taking into account the local electric field by solving the Laplace equation while another model assumes an average voltage gradient applied between the two electrodes. Results show that while the wall temperature distribution is different for the two cases, the bulk fluid temperature and the average outlet temperature are the same. The predicted temperatures generally agree well with the measured temperatures.
Original languageEnglish
Pages (from-to)751 - 758
Number of pages7
JournalAsia-Pacific Journal of Chemical Engineering
Issue number5
Publication statusPublished - 2009

Cite this