TY - JOUR
T1 - Nutritional implications of olives and sugar
T2 - attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein
AU - Kerimi, Asimina
AU - Nyambe-Silavwe, Hilda
AU - Pyner, Alison
AU - Oladele, Ebun
AU - Gauer, Julia S.
AU - Stevens, Yala
AU - Williamson, Gary
PY - 2019/4
Y1 - 2019/4
N2 - Purpose: The secoiridoid oleuropein, as found in olives and olive leaves, modulates some biomarkers of diabetes risk in vivo. A possible mechanism may be to attenuate sugar digestion and absorption. Methods: We explored the potential of oleuropein, prepared from olive leaves in a water soluble form (OLE), to inhibit digestive enzymes (α-amylase, maltase, sucrase), and lower [14C(U)]-glucose uptake in Xenopus oocytes expressing human GLUT2 and [14C(U)]-glucose transport across differentiated Caco-2 cell monolayers. We conducted 7 separate crossover, controlled, randomised intervention studies on healthy volunteers (double-blinded and placebo-controlled for the OLE supplement) to assess the effect of OLE on post-prandial blood glucose after consumption of bread, glucose or sucrose. Results: OLE inhibited intestinal maltase, human sucrase, glucose transport across Caco-2 monolayers, and uptake of glucose by GLUT2 in Xenopus oocytes, but was a weak inhibitor of human α-amylase. OLE, in capsules, in solution or as naturally present in olives, did not affect post-prandial glucose derived from bread, while OLE in solution attenuated post-prandial blood glucose after consumption of 25 g sucrose, but had no effect when consumed with 50 g of sucrose or glucose. Conclusion: The combined inhibition of sucrase activity and of glucose transport observed in vitro was sufficient to modify digestion of low doses of sucrose in healthy volunteers. In comparison, the weak inhibition of α-amylase by OLE was not enough to modify blood sugar when consumed with a starch-rich food, suggesting that a threshold potency is required for inhibition of digestive enzymes in order to translate into in vivo effects.
AB - Purpose: The secoiridoid oleuropein, as found in olives and olive leaves, modulates some biomarkers of diabetes risk in vivo. A possible mechanism may be to attenuate sugar digestion and absorption. Methods: We explored the potential of oleuropein, prepared from olive leaves in a water soluble form (OLE), to inhibit digestive enzymes (α-amylase, maltase, sucrase), and lower [14C(U)]-glucose uptake in Xenopus oocytes expressing human GLUT2 and [14C(U)]-glucose transport across differentiated Caco-2 cell monolayers. We conducted 7 separate crossover, controlled, randomised intervention studies on healthy volunteers (double-blinded and placebo-controlled for the OLE supplement) to assess the effect of OLE on post-prandial blood glucose after consumption of bread, glucose or sucrose. Results: OLE inhibited intestinal maltase, human sucrase, glucose transport across Caco-2 monolayers, and uptake of glucose by GLUT2 in Xenopus oocytes, but was a weak inhibitor of human α-amylase. OLE, in capsules, in solution or as naturally present in olives, did not affect post-prandial glucose derived from bread, while OLE in solution attenuated post-prandial blood glucose after consumption of 25 g sucrose, but had no effect when consumed with 50 g of sucrose or glucose. Conclusion: The combined inhibition of sucrase activity and of glucose transport observed in vitro was sufficient to modify digestion of low doses of sucrose in healthy volunteers. In comparison, the weak inhibition of α-amylase by OLE was not enough to modify blood sugar when consumed with a starch-rich food, suggesting that a threshold potency is required for inhibition of digestive enzymes in order to translate into in vivo effects.
KW - Oleuropein
KW - Olives
KW - Post-prandial
KW - Sucrase
KW - Sugar
KW - Transport
UR - http://www.scopus.com/inward/record.url?scp=85043366655&partnerID=8YFLogxK
U2 - 10.1007/s00394-018-1662-9
DO - 10.1007/s00394-018-1662-9
M3 - Article
AN - SCOPUS:85043366655
SN - 1436-6207
VL - 58
SP - 1315
EP - 1330
JO - European Journal of Nutrition
JF - European Journal of Nutrition
IS - 3
ER -