Abstract
We investigate the relationship between explosion energy and nucleosynthesis in Population III supernovae and provide nucleosynthetic results for the explosions of stars with progenitor masses of 15 M⊙, 20 M⊙, 30 M⊙, 40 M⊙, 60 M⊙, and 80M⊙, and explosion energies between approximately 1050 erg and 1053 erg. We find that the typical abundance pattern observed in metal-poor stars is best matched by supernovae with progenitor mass in the range 15M⊙ - 30M⊙ and explosion energy of~(5-10)×1051 erg. In thesemodels, a reverse shock caused by jumps in density between shells of different composition serves to decrease synthesis of chromium and manganese, which is favourable to matching the observed abundances in metal-poor stars. Spherically symmetric explosions of our models with progenitor mass ≤ 40 M⊙ do not provide yields that are compatible with the iron-peak abundances that are typically observed in metal-poor stars; however, by approximating the yields that we might expect from these models in highly aspherical explosions, we find indications that explosions of stars 40 M⊙ - 80 M⊙ with bipolar jets may be good candidates for the enrichment sources of metal-poor stars with enhanced carbon abundances.
Original language | English |
---|---|
Pages (from-to) | 495-516 |
Number of pages | 22 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 479 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Sep 2018 |
Keywords
- Abundances
- Early universe
- Nucleosynthesis
- Supernovae: general