Abstract
The origin and evolution of venom proteins in helodermatid lizards was investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: i) the first full-length sequences of Lethal Toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral mono-domain, mono-product gene (beta-defensin) which underwent three tandem domain duplications to encode a tetra-domain, mono-product with a possible novel protein fold; (ii) an ancestral mono-domain gene (encoding a natriuretic peptide) was medially extended to become a penta-domain, penta-product through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by post-translational proteolysis; and iii) an ancestral multi-domain, multi-product gene belonging to the VIP/glucagon family being mutated to encode for a mono-domain, mono-product (exendins) followed by duplication and diversification into two variant classes (exendins 1 2 and exendins 3 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isofroms within each class. These results highlight the importance of utilising evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.
Original language | English |
---|---|
Pages (from-to) | 395 - 407 |
Number of pages | 12 |
Journal | Molecular Biology and Evolution |
Volume | 27 |
DOIs | |
Publication status | Published - 2010 |