TY - JOUR
T1 - Novel prosperous computational estimations for greenhouse gas adsorptive control by zeolites using machine learning methods
AU - Raji, Mojtaba
AU - Dashti, Amir
AU - Alivand, Masood S.
AU - Asghari, Morteza
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/4/1
Y1 - 2022/4/1
N2 - To predict CO2 adsorptive capture, as a vital environmental issue, using different zeolites including 5A, 13X, T-Type, SSZ-13, and SAPO-34, different models have been developed by implementing artificial intelligence algorithms. Hybrid adaptive neuro-fuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS) and the least-squares support vector machine (LSSVM) modeling optimized with the coupled simulated annealing (CSA) optimization have been employed for the models. The developed models, validated by utilizing various graphical and statistical methods exhibited that the Hybrid-ANFIS model estimations for the gas adsorption on 5A, T-Type, SSZ-13, and SAPO-34 zeolites with average absolute relative deviation (AARD) % of 8.21, 1.92, 4.99 and 2.26, and PSO ANFIS model estimations for the gas adsorption on zeolite 13X with an AARD of 4.85% were in good agreement with corresponding experimental data. It could be deduced that the proposed models were more prosperous and efficient in favor of the design and analysis of adsorption processes than previous ones.
AB - To predict CO2 adsorptive capture, as a vital environmental issue, using different zeolites including 5A, 13X, T-Type, SSZ-13, and SAPO-34, different models have been developed by implementing artificial intelligence algorithms. Hybrid adaptive neuro-fuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS) and the least-squares support vector machine (LSSVM) modeling optimized with the coupled simulated annealing (CSA) optimization have been employed for the models. The developed models, validated by utilizing various graphical and statistical methods exhibited that the Hybrid-ANFIS model estimations for the gas adsorption on 5A, T-Type, SSZ-13, and SAPO-34 zeolites with average absolute relative deviation (AARD) % of 8.21, 1.92, 4.99 and 2.26, and PSO ANFIS model estimations for the gas adsorption on zeolite 13X with an AARD of 4.85% were in good agreement with corresponding experimental data. It could be deduced that the proposed models were more prosperous and efficient in favor of the design and analysis of adsorption processes than previous ones.
KW - ANFIS
KW - Artificial intelligence
KW - CO adsorption
KW - LSSVM
KW - Zeolites
UR - http://www.scopus.com/inward/record.url?scp=85123718290&partnerID=8YFLogxK
U2 - 10.1016/j.jenvman.2022.114478
DO - 10.1016/j.jenvman.2022.114478
M3 - Article
C2 - 35093752
AN - SCOPUS:85123718290
SN - 0301-4797
VL - 307
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 114478
ER -