@article{9bee4d98cd6347eca8210f4e441ef204,
title = "Novel bacterial clade reveals origin of form I Rubisco",
abstract = "Rubisco sustains the biosphere through the fixation of CO2 into biomass. In plants and cyanobacteria, form I Rubisco is structurally comprised of large and small subunits, whereas all other Rubisco forms lack small subunits. The rise of the form I complex through the innovation of small subunits represents a key, yet poorly understood, transition in Rubisco{\textquoteright}s evolution. Through metagenomic analyses, we discovered a previously uncharacterized clade sister to form I Rubisco that evolved without small subunits. This clade diverged before the evolution of cyanobacteria and the origin of the small subunit; thus, it provides a unique reference point to advance our understanding of form I Rubisco evolution. Structural and kinetic data presented here reveal how a proto-form I Rubisco assembled and functioned without the structural stability imparted from small subunits. Our findings provide insight into a key evolutionary transition of the most abundant enzyme on Earth and the predominant entry point for nearly all global organic carbon.",
author = "Banda, {Douglas M.} and Pereira, {Jose H.} and Liu, {Albert K.} and Orr, {Douglas J.} and Michal Hammel and Christine He and Parry, {Martin A.J.} and Elizabete Carmo-Silva and Adams, {Paul D.} and Banfield, {Jillian F.} and Shih, {Patrick M.}",
note = "Funding Information: D.M.B., A.K.L. and P.M.S. acknowledge support from a Society in Science–Branco Weiss fellowship from ETH Zurich. J.H.P., P.D.A. and P.M.S. acknowledge support from the Joint BioEnergy Institute which is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under contract no. DE-AC02-05CH11231 between LBNL and the US Department of Energy. C.H. and J.F.B. thank A. Lavy and A. Sharrar for providing unpublished Rubisco sequences, J. West-Roberts for assistance, the Rifle IFRC/SFA 2.0 Metagenomics and Proteomics Data Analysis Project, the Allen Foundation, the Chan Zuckerberg Biohub and the Innovative Genomics Institute for support. C.H. acknowledges the Camille and Henry Dreyfus Foundation for a postdoctoral fellowship and the Joint Genome Institute CSP for sequencing. M.H. acknowledges support from the Department of Energy BER Integrated Diffraction Analysis Technologies (IDAT) program, NIGMS grant no. P30 GM124169-01 (ALS-ENABLE) for SAXS data collection at SIBYLS. D.J.O., M.A.J.P. and E.C.S. acknowledge support from the UK Biotechnology and Biological Sciences Research Council grant no. BB/I024488/1. We thank M. Hayer-Hartl (Max Planck Institute of Biochemistry, Martinsried, Germany) for the kind donation of the Syn6301-rbcL-pET11a, Syn6301-rbcLS-pET11a, pG-KJE8 and pBAD33ES/EL plasmids used in this study. Additionally, we thank N. Prywes for the kind donation of the pET28-His14-bdSUMO and pSF1389 plasmids. We also thank F. Guo and the UC Davis BioEM core facility for electron microscope images and the laboratory of J. Siegel (UC Davis Genome Center) for use of their qPCR machine for protein thermal shift experiments. We are grateful to A. Flamholz for collecting publicly available form I Rubisco kinetic data used in this study, and to A. Marinas and R. Vermon Callado for assisting with enzyme purifications. We thank K. Markel for his edits and suggestions on the manuscript. Publisher Copyright: {\textcopyright} 2020, The Author(s), under exclusive licence to Springer Nature Limited.",
year = "2020",
month = sep,
doi = "10.1038/s41477-020-00762-4",
language = "English",
volume = "6",
pages = "1158--1166+",
journal = "Nature Plants",
issn = "2055-026X",
publisher = "Nature Publishing Group",
number = "9",
}