## Abstract

A vertex colouring of a graph is nonrepetitive if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively ℓ-choosable if given lists of at least ℓ colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that, for some constant c, every graph with maximum degree Δis cΔ^{2}-choosable. We prove this result with c=1 (ignoring lower order terms). We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 5-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that graphs with pathwidth θ are nonrepetitively O(θ^{2})-colourable.

Original language | English |
---|---|

Pages (from-to) | 661-686 |

Number of pages | 26 |

Journal | Combinatorica |

Volume | 36 |

Issue number | 6 |

DOIs | |

Publication status | Published - 2016 |