TY - JOUR
T1 - Nonlinear exact coherent structures in pipe flow and their instabilities
AU - Ozcakir, Ozge
AU - Hall, Philip
AU - Tanveer, Saleh
PY - 2019/6/10
Y1 - 2019/6/10
N2 - In this paper, we present computational results of some two-fold azimuthally symmetric travelling waves and their stability. Calculations over a range of Reynolds numbers reveal connections between a class of solutions computed by Wedin & Kerswell (J. Fluid Mech., vol. 508, 2004, pp. 333-371) (henceforth called the WK solution) and the vortex-wave interaction theory of Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641-666) and Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178-205). In particular, the continuation of the WK solutions to larger values of shows that the WK solution bifurcates from a shift-And-rotate symmetric solution, which we call the WK2 state. The WK2 solution computed for shows excellent agreement with the theoretical , and scalings of the waves, rolls and streaks respectively. Furthermore, these states are found to have only two unstable modes in the large regime, with growth rates estimated to be and , close to the theoretical and asymptotic results for edge and sinuous instability modes of vortex-wave interaction states (Deguchi & Hall, J. Fluid Mech., vol. 802, 2016, pp. 634-666) in plane Couette flow. For the nonlinear viscous core states (Ozcakir et al., J. Fluid Mech., vol. 791, 2016, pp. 284-328), characterized by spatial a shrinking of the wave and roll structure towards the pipe centre with increasing , we continued the solution to and we find only one unstable mode in the large Reynolds number regime, with growth rate scaling as within the class of symmetry-preserving disturbances.
AB - In this paper, we present computational results of some two-fold azimuthally symmetric travelling waves and their stability. Calculations over a range of Reynolds numbers reveal connections between a class of solutions computed by Wedin & Kerswell (J. Fluid Mech., vol. 508, 2004, pp. 333-371) (henceforth called the WK solution) and the vortex-wave interaction theory of Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641-666) and Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178-205). In particular, the continuation of the WK solutions to larger values of shows that the WK solution bifurcates from a shift-And-rotate symmetric solution, which we call the WK2 state. The WK2 solution computed for shows excellent agreement with the theoretical , and scalings of the waves, rolls and streaks respectively. Furthermore, these states are found to have only two unstable modes in the large regime, with growth rates estimated to be and , close to the theoretical and asymptotic results for edge and sinuous instability modes of vortex-wave interaction states (Deguchi & Hall, J. Fluid Mech., vol. 802, 2016, pp. 634-666) in plane Couette flow. For the nonlinear viscous core states (Ozcakir et al., J. Fluid Mech., vol. 791, 2016, pp. 284-328), characterized by spatial a shrinking of the wave and roll structure towards the pipe centre with increasing , we continued the solution to and we find only one unstable mode in the large Reynolds number regime, with growth rate scaling as within the class of symmetry-preserving disturbances.
KW - transition to turbulence
UR - http://www.scopus.com/inward/record.url?scp=85064866170&partnerID=8YFLogxK
U2 - 10.1017/jfm.2019.20
DO - 10.1017/jfm.2019.20
M3 - Article
AN - SCOPUS:85064866170
VL - 868
SP - 341
EP - 368
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -