No-three-in-line-in-3D

Attila Pór, David R. Wood

    Research output: Contribution to journalConference articleResearchpeer-review

    3 Citations (Scopus)

    Abstract

    The no-three-in-line problem, introduced by Dudeney in 1917, asks for the maximum number of points in the n × n grid with no three points collinear. In 1951, Erdös proved that the answer is θ(n). We consider the analogous three-dimensional problem, and prove that the maximum number of points in the n × n × n grid with no three collinear is θ(n 2). This result is generalised by the notion of a 3D drawing of a graph. Here each vertex is represented by a distinct gridpoint in ℤ3, such that the line-segment representing each edge does not intersect any vertex, except for its own endpoints. Note that edges may cross. A 3D drawing of a complete graph Kn is nothing more than a set of n gridpoints with no three collinear. A slight generalisation of our first result is that the minimum volume for a 3D drawing of Kn is θ(n 3/2). This compares favourably to θ(n3) when edges are not allowed to cross. Generalising the construction for Kn, we prove that every k-colourable graph on n vertices has a 3D drawing with O(n√k) volume. For the k-partite Turán graph, we prove a lower bound of Ω((kn)3/4).

    Original languageEnglish
    Pages (from-to)395-402
    Number of pages8
    JournalLecture Notes in Computer Science
    Volume3383
    Publication statusPublished - 1 Dec 2004
    Event12th International Symposium on Graph Drawing, GD 2004 - New York, United States of America
    Duration: 29 Sep 20042 Oct 2004

    Cite this