NiO–ZnO Nanoheterojunction Networks for Room-Temperature Volatile Organic Compounds Sensing

Hongjun Chen, Renheng Bo, Aabhash Shrestha, Bobo Xin, Noushin Nasiri, Jin Zhou, Iolanda Di Bernardo, Aaron Dodd, Martin Saunders, Josh Lipton-Duffin, Thomas White, Takuya Tsuzuki, Antonio Tricoli

Research output: Contribution to journalArticleResearchpeer-review

27 Citations (Scopus)

Abstract

Engineering of highly performing nanomaterials, capable of rapid detection of trace concentrations of gas molecules at room temperature, is key to the development of the next generation of miniaturized chemical sensors. Here, a highly performing nanoheterojunctions layout is presented for the rapid room-temperature chemical sensing of volatile organic compounds down to ten particles per billion concentrations. The layout consists of a 3D network of nickel oxide–zinc oxide (NiO–ZnO) p–n semiconductors with grain size of ≈20 nm nanometers and a porosity of ≈98%. Notably, it is observed that the formation of the p–n heterojunctions by decoration of a ZnO nanoparticle networks with NiO increases the sensor response by more than four times while improving the lower limit of detection. Under solar light irradiation, the optimal NiO–ZnO nanoheterojunction networks demonstrate a strong and selective room-temperature response to two important volatile organic compounds utilized for breath analysis, namely acetone and ethanol. Furthermore, these NiO–ZnO nanoheterojunctions show an inverse response to acetone from that observed for all others reducing gas molecules (i.e., ethanol, propane, and ethylbenzene). It is believed that these novel insights of the optoelectrochemical properties of ultraporous nanoheterojunction networks provide guidelines for the future design of low-power solid-state chemical sensors.

Original languageEnglish
Article number1800677
Number of pages8
JournalAdvanced Optical Materials
Volume6
Issue number22
DOIs
Publication statusPublished - 19 Nov 2018
Externally publishedYes

Keywords

  • chemical sensors
  • flame synthesis
  • nanoheterojunctions
  • room temperature
  • volatile organic compounds

Cite this