Nilpotent orbits in real symmetric pairs and stationary black holes

Heiko Dietrich, Willem A. de Graaf, Daniele Ruggeri, Mario Trigiante

Research output: Contribution to journalArticleResearchpeer-review

Abstract

In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL2(R))4 acting on the fourth tensor power of the natural 2-dimensional SL2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.

Original languageEnglish
Article number1600118
Number of pages25
JournalFortschritte der Physik
Volume65
Issue number2
DOIs
Publication statusPublished - 1 Feb 2017

Keywords

  • black hole
  • real nilpotent orbits
  • supergravity

Cite this

Dietrich, Heiko ; de Graaf, Willem A. ; Ruggeri, Daniele ; Trigiante, Mario. / Nilpotent orbits in real symmetric pairs and stationary black holes. In: Fortschritte der Physik. 2017 ; Vol. 65, No. 2.
@article{fc99fa64151b47a99d1fb17096b1964f,
title = "Nilpotent orbits in real symmetric pairs and stationary black holes",
abstract = "In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL2(R))4 acting on the fourth tensor power of the natural 2-dimensional SL2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.",
keywords = "black hole, real nilpotent orbits, supergravity",
author = "Heiko Dietrich and {de Graaf}, {Willem A.} and Daniele Ruggeri and Mario Trigiante",
year = "2017",
month = "2",
day = "1",
doi = "10.1002/prop.201600118",
language = "English",
volume = "65",
journal = "Fortschritte der Physik",
issn = "0015-8208",
publisher = "Wiley-VCH Verlag GmbH & Co. KGaA",
number = "2",

}

Nilpotent orbits in real symmetric pairs and stationary black holes. / Dietrich, Heiko; de Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario.

In: Fortschritte der Physik, Vol. 65, No. 2, 1600118, 01.02.2017.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Nilpotent orbits in real symmetric pairs and stationary black holes

AU - Dietrich, Heiko

AU - de Graaf, Willem A.

AU - Ruggeri, Daniele

AU - Trigiante, Mario

PY - 2017/2/1

Y1 - 2017/2/1

N2 - In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL2(R))4 acting on the fourth tensor power of the natural 2-dimensional SL2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.

AB - In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL2(R))4 acting on the fourth tensor power of the natural 2-dimensional SL2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.

KW - black hole

KW - real nilpotent orbits

KW - supergravity

UR - http://www.scopus.com/inward/record.url?scp=85011349957&partnerID=8YFLogxK

U2 - 10.1002/prop.201600118

DO - 10.1002/prop.201600118

M3 - Article

VL - 65

JO - Fortschritte der Physik

JF - Fortschritte der Physik

SN - 0015-8208

IS - 2

M1 - 1600118

ER -