Projects per year
Abstract
The study of neuronal responses to random-dot motion patterns has provided some of the most valuable insights into how the activity of neurons is related to perception. In the opposite directions of motion paradigm, the motion signal strength is decreased by manipulating the coherence of random dot patterns to examine how well the activity of single neurons represents the direction of motion. To extend this paradigm to populations of neurons, studies have used modelling based on data from pairs of neurons, but several important questions require further investigation with larger neuronal datasets. We recorded neuronal populations in the middle temporal (MT) and medial superior temporal (MST) areas of anaesthetized marmosets with electrode arrays, while varying the coherence of random dot patterns in two opposite directions of motion (left and right). Using the spike rates of simultaneously recorded neurons, we decoded the direction of motion at each level of coherence with linear classifiers. We found that the presence of correlations had a detrimental effect to decoding performance, but that learning the correlation structure produced better decoding performance compared to decoders that ignored the correlation structure. We also found that reducing motion coherence increased neuronal correlations, but decoders did not need to be optimized for each coherence level. Finally, we showed that decoder weights depend of left-right selectivity at 100% coherence, rather than the preferred direction. These results have implications for understanding how the information encoded by populations of neurons is affected by correlations in spiking activity.
Original language | English |
---|---|
Number of pages | 17 |
Journal | eNeuro |
Volume | 5 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Nov 2018 |
Keywords
- electrode arrays
- marmoset
- motion
- population decoding
- random dot
Projects
- 1 Finished
-
ARC Centre of Excellence for Integrative Brain Function
Egan, G. (Primary Chief Investigator (PCI)), Rosa, M. (Chief Investigator (CI)), Lowery, A. (Chief Investigator (CI)), Stuart, G. (Chief Investigator (CI)), Arabzadeh, E. (Chief Investigator (CI)), Skafidas, E. S. (Chief Investigator (CI)), Ibbotson, M. (Chief Investigator (CI)), Petrou, S. (Chief Investigator (CI)), Paxinos, G. (Chief Investigator (CI)), Mattingley, J. (Chief Investigator (CI)), Garrido, M. (Chief Investigator (CI)), Sah, P. K. (Chief Investigator (CI)), Robinson, P. A. (Chief Investigator (CI)), Martin, P. (Chief Investigator (CI)), Grunert, U. (Chief Investigator (CI)), Tanaka, K. (Partner Investigator (PI)), Mitra, P. (Partner Investigator (PI)), Johnson, G. (Partner Investigator (PI)), Diamond, M. (Partner Investigator (PI)), Margrie, T. (Partner Investigator (PI)), Leopold, D. (Partner Investigator (PI)), Movshon, J. (Partner Investigator (PI)), Markram, H. (Partner Investigator (PI)), Victor, J. (Partner Investigator (PI)), Hill, S. (Partner Investigator (PI)) & Jirsa, V. K. (Partner Investigator (PI))
Australian National University (ANU), Eidgenössische Technische Hochschule Zürich (ETH Zürich) (Federal Institute of Technology Zurich), Australian Research Council (ARC), Karolinska Institutet (Karolinska Institute), Council of the Queensland Institute of Medical Research (trading as QIMR Berghofer Medical Research Institute), Ecole Polytechnique Federale de Lausanne (EPFL) (Swiss Federal Institute of Technology in Lausanne) , Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of Sydney, Monash University – Internal University Contribution, NIH - National Institutes of Health (United States of America), Cornell University, New York University, Francis Crick Institute, Scuola Internazionale Superiore di Studi Avanzati (International School for Advanced Studies), Duke University, Cold Spring Harbor Laboratory, RIKEN
25/06/14 → 31/12/21
Project: Research