Abstract
Regulatory T cells (Tregs) play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127− Tregs in controlling immunity in infant males and females to vaccination with diphtheria–tetanus–whole cell pertussis (DTP) and/or measles vaccine (MV). We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.
Original language | English |
---|---|
Article number | 921 |
Number of pages | 12 |
Journal | Frontiers in Immunology |
Volume | 8 |
Issue number | AUG |
DOIs | |
Publication status | Published - 14 Aug 2017 |
Keywords
- Antibodies
- Beta-2 microglobulin
- Cytokines
- Immune activation
- Regulatory T cells
- Sex
- Vaccines
Cite this
}
Negative correlation between circulating Cd4+Foxp3+Cd127− regulatory T Cells and subsequent antibody responses to infant measles vaccine but not diphtheria–tetanus–pertussis vaccine implies a regulatory role. / Ndure, Jorjoh; Noho-Konteh, Fatou; Adetifa, Jane U.; Cox, Momodou; Barker, Peter Francis; Le, My Thanh; Sanyang, Lady Chilel; Drammeh, Adboulie; Whittle, Hilton C; Clarke, Ed; Plebanski, Magdalena; Rowland-Jones, Sarah L; Flanagan, Katie L.
In: Frontiers in Immunology, Vol. 8, No. AUG, 921, 14.08.2017.Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Negative correlation between circulating Cd4+Foxp3+Cd127− regulatory T Cells and subsequent antibody responses to infant measles vaccine but not diphtheria–tetanus–pertussis vaccine implies a regulatory role
AU - Ndure, Jorjoh
AU - Noho-Konteh, Fatou
AU - Adetifa, Jane U.
AU - Cox, Momodou
AU - Barker, Peter Francis
AU - Le, My Thanh
AU - Sanyang, Lady Chilel
AU - Drammeh, Adboulie
AU - Whittle, Hilton C
AU - Clarke, Ed
AU - Plebanski, Magdalena
AU - Rowland-Jones, Sarah L
AU - Flanagan, Katie L.
PY - 2017/8/14
Y1 - 2017/8/14
N2 - Regulatory T cells (Tregs) play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127− Tregs in controlling immunity in infant males and females to vaccination with diphtheria–tetanus–whole cell pertussis (DTP) and/or measles vaccine (MV). We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.
AB - Regulatory T cells (Tregs) play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127− Tregs in controlling immunity in infant males and females to vaccination with diphtheria–tetanus–whole cell pertussis (DTP) and/or measles vaccine (MV). We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.
KW - Antibodies
KW - Beta-2 microglobulin
KW - Cytokines
KW - Immune activation
KW - Regulatory T cells
KW - Sex
KW - Vaccines
UR - http://www.scopus.com/inward/record.url?scp=85027838296&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2017.00921
DO - 10.3389/fimmu.2017.00921
M3 - Article
VL - 8
JO - Frontiers in Immunology
JF - Frontiers in Immunology
SN - 1664-3224
IS - AUG
M1 - 921
ER -