Nature of gold mineralisation in the Walhalla Goldfield, southeast Australia

Megan Hough, Frank Bierlein, Laurent Ailleres, Stafford McKnight

    Research output: Contribution to journalArticleResearchpeer-review

    3 Citations (Scopus)


    The Walhalla-Woods Point Goldfield in southeast Australia is characterised by large gold deposits associated with a Late Devonian dyke swarm. The setting of this goldfield is unique because unlike the major gold deposits in Victoria, it occurs close to the eastern margin of the Western Lachlan Orogen, and highlights the disparities between the evolving phases of orogenic gold mineralisation in the Western Lachlan Orogen, and the contrasts between sediment hosted, dyke-associated and dyke-hosted gold mineralisation. This study integrates existing and new data from renewed mapping of the geology and geochemistry of three gold deposits near the township of Walhalla, in the historically important yet under-explored and under-researched Walhalla-Woods Point Goldfield. The ten highest yielding deposits within the goldfield are either hosted within, or adjacent to, intrusions of the Woods Point Dyke Swarm. This is due to the greater chemical reactivity of the calc-alkaline dykes, and the greater rheological contrast between the dykes and surrounding low-grade metasedimentary units, which allowed for the formation of dyke-hosted quartz breccia veins that are consistently favourable sites for gold mineralisation in the Walhalla Goldfield. This is in contrast to historical production, which concentrated on visible gold within the shear zone-hosted laminated quartz veins. Gold and As assay results have highlighted the increased levels of invisible gold disseminated along dyke margins in proximity to shear zones and quartz reefs. The high-yielding gold deposits hosted wholly by the dyke intrusions of the Woods Point Dyke Swarm are orogenic gold deposits, as they are not associated with elevated levels of Bi, W, As, Mb, Te and Sb, typical of intrusion-related gold deposits.
    Original languageEnglish
    Pages (from-to)969 - 992
    Number of pages24
    JournalAustralian Journal of Earth Sciences
    Issue number7
    Publication statusPublished - 2010

    Cite this