Research output per year
Research output per year
Alexander Mellor, Nicholas P. Hylton, Hubert Hauser, Tomos Thomas, Kan Hua Lee, Yahya Al-Saleh, Vincenzo Giannini, Avi Braun, Josine Loo, Dries Vercruysse, Pol Van Dorpe, Benedikt Bläsi, Stefan A. Maier, N. J. Ekins-Daukes
Research output: Contribution to journal › Article › Research › peer-review
This paper contains a combined experimental and simulation study of the effect of Al and AlInP nanoparticles on the performance of multijunction (MJ) solar cells. In particular, we investigate oblique photon scattering by the nanoparticle arrays as a means of improving thinned subcells or those with low diffusion lengths, either inherently or due to radiation damage. Experimental results show the feasibility of integrating nanoparticle arrays into the antireflection coatings of commercial InGaP/InGaAs/Ge solar cells, and computational results show that nanoparticle arrays can improve the internal quantum efficiency via optical path length enhancement. However, a design that improves the external quantum efficiency of a state-of-the-art cell has not been found, despite the large parameter space studied. We show a clear tradeoff between oblique scattering and transmission loss and present design principles and insights into how improvements can be made.
Original language | English |
---|---|
Pages (from-to) | 1678-1687 |
Number of pages | 10 |
Journal | IEEE Journal of Photovoltaics |
Volume | 6 |
Issue number | 6 |
DOIs | |
Publication status | Published - Nov 2016 |
Externally published | Yes |
Research output: Chapter in Book/Report/Conference proceeding › Conference Paper › Other › peer-review