Projects per year
Abstract
In this review we provide an up to date snapshot of nanomedicines either currently approved by the US FDA, or in the FDA clinical trials process. We define nanomedicines as therapeutic or imaging agents which comprise a nanoparticle in order to control the biodistribution, enhance the efficacy, or otherwise reduce toxicity of a drug or biologic. We identified 51 FDA-approved nanomedicines that met this definition and 77 products in clinical trials, with ~40% of trials listed in clinicaltrials.gov started in 2014 or 2015. While FDA approved materials are heavily weighted to polymeric, liposomal, and nanocrystal formulations, there is a trend towards the development of more complex materials comprising micelles, protein-based NPs, and also the emergence of a variety of inorganic and metallic particles in clinical trials. We then provide an overview of the different material categories represented in our search, highlighting nanomedicines that have either been recently approved, or are already in clinical trials. We conclude with some comments on future perspectives for nanomedicines, which we expect to include more actively-targeted materials, multi-functional materials (“theranostics”) and more complicated materials that blur the boundaries of traditional material categories. A key challenge for researchers, industry, and regulators is how to classify new materials and what additional testing (e.g. safety and toxicity) is required before products become available.
Original language | English |
---|---|
Pages (from-to) | 2373-2387 |
Number of pages | 15 |
Journal | Pharmaceutical Research |
Volume | 33 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2016 |
Keywords
- clinical trials
- FDA
- nanomedicine
- nanoparticles
- nanopharmaceuticals
- nanotherpeutics
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A. K., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J. S., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, Sungkyunkwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research