Projects per year
Abstract
Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensinconverting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody- Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Original language | English |
---|---|
Article number | e2101918118 |
Number of pages | 12 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 118 |
Issue number | 19 |
DOIs | |
Publication status | Published - 11 May 2021 |
Keywords
- Antiviral therapeutics
- Cryo-EM
- Crystallography
- Nanobodies
- SARS-CoV-2
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T. (Primary Chief Investigator (PCI)), Boyd, B. (Chief Investigator (CI)), Bunnett, N. (Chief Investigator (CI)), Porter, C. (Chief Investigator (CI)), Caruso, F. (Chief Investigator (CI)), Kent, S. (Chief Investigator (CI)), Thordarson, P. (Chief Investigator (CI)), Kearnes, M. (Chief Investigator (CI)), Gooding, J. (Chief Investigator (CI)), Kavallaris, M. (Chief Investigator (CI)), Thurecht, K. J. (Chief Investigator (CI)), Whittaker, A. K. (Chief Investigator (CI)), Parton, R. (Chief Investigator (CI)), Corrie, S. R. (Chief Investigator (CI)), Johnston, A. (Chief Investigator (CI)), McGhee, J. (Chief Investigator (CI)), Greguric, I. D. (Partner Investigator (PI)), Stevens, M. M. (Partner Investigator (PI)), Lewis, J. S. (Partner Investigator (PI)), Lee, D. S. (Partner Investigator (PI)), Alexander, C. (Partner Investigator (PI)), Dawson, K. (Partner Investigator (PI)), Hawker, C. (Partner Investigator (PI)), Haddleton, D. (Partner Investigator (PI)), Thierry, B. (Chief Investigator (CI)), Prestidge, C. A. (Chief Investigator (CI)), Meyer, A. (Project Manager), Jones-Jayasinghe, N. (Project Manager), Voelcker, N. (Chief Investigator (CI)), Nann, T. (Chief Investigator (CI)) & McLean, K. (Partner Investigator (PI))
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, Sungkyunkwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research