Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related

John E. Hart, Iain J. Clarke, Gail P. Risbridger, Ben Ferneyhough, Mónica Vega-Hernández

Research output: Contribution to journalArticleResearchpeer-review

Abstract

In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7-8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC-MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus-both of which had anti-proliferative and proapoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody- together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7-8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of ã70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.

Original languageEnglish
Article numbere3833
Number of pages42
JournalPeerJ
Volume2017
Issue number10
DOIs
Publication statusPublished - 13 Oct 2017

Keywords

  • Fruit fly
  • Granin
  • Hormone
  • Hypothalamus
  • Macrogranin I
  • Q9W2X8
  • Tissue reduction

Cite this

Hart, John E. ; Clarke, Iain J. ; Risbridger, Gail P. ; Ferneyhough, Ben ; Vega-Hernández, Mónica. / Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related. In: PeerJ. 2017 ; Vol. 2017, No. 10.
@article{37a67920328e4ea7bd82e8d84ed680a5,
title = "Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related",
abstract = "In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7-8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC-MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus-both of which had anti-proliferative and proapoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody- together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7-8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of {\~a}70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.",
keywords = "Fruit fly, Granin, Hormone, Hypothalamus, Macrogranin I, Q9W2X8, Tissue reduction",
author = "Hart, {John E.} and Clarke, {Iain J.} and Risbridger, {Gail P.} and Ben Ferneyhough and M{\'o}nica Vega-Hern{\'a}ndez",
year = "2017",
month = "10",
day = "13",
doi = "10.7717/peerj.3833",
language = "English",
volume = "2017",
journal = "PeerJ",
issn = "2167-8359",
publisher = "PeerJ",
number = "10",

}

Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related. / Hart, John E.; Clarke, Iain J.; Risbridger, Gail P.; Ferneyhough, Ben; Vega-Hernández, Mónica.

In: PeerJ, Vol. 2017, No. 10, e3833, 13.10.2017.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related

AU - Hart, John E.

AU - Clarke, Iain J.

AU - Risbridger, Gail P.

AU - Ferneyhough, Ben

AU - Vega-Hernández, Mónica

PY - 2017/10/13

Y1 - 2017/10/13

N2 - In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7-8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC-MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus-both of which had anti-proliferative and proapoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody- together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7-8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of ã70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.

AB - In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7-8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC-MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus-both of which had anti-proliferative and proapoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody- together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7-8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of ã70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.

KW - Fruit fly

KW - Granin

KW - Hormone

KW - Hypothalamus

KW - Macrogranin I

KW - Q9W2X8

KW - Tissue reduction

UR - http://www.scopus.com/inward/record.url?scp=85031119909&partnerID=8YFLogxK

U2 - 10.7717/peerj.3833

DO - 10.7717/peerj.3833

M3 - Article

VL - 2017

JO - PeerJ

JF - PeerJ

SN - 2167-8359

IS - 10

M1 - e3833

ER -