TY - JOUR
T1 - Myeloid cell-mediated renal injury in rapidly progressive glomerulonephritis depends upon spleen tyrosine kinase
AU - Ryan, Jessica
AU - Ma, Frank Y
AU - Han, Yingjie
AU - Ozols, Elyce
AU - Kanellis, John
AU - Tesch, Greg H
AU - Nikolic-Paterson, David J
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Antibody-dependent activation of myeloid cells within the glomerulus plays a central role in rapidly progressive forms of glomerulonephritis. The spleen tyrosine kinase (Syk) is expressed by all leukocytes, except mature T cells, and is required for signalling via the B-cell receptor, Fc receptors, and some integrins. Syk has been proposed as a therapeutic target in glomerulonephritis. However, little is known of Syk activation in human kidney disease, while studies in experimental glomerulonephritis using non-selective Syk inhibitors require validation via conditional gene deletion. The current study addressed both of these important points. Syk activation (Tyr525/526 phosphorylation) was examined in a cohort of 96 patients with different glomerulonephritides. Syk activation was evident in infiltrating leukocytes, mainly neutrophils and macrophages, in 36/40 cases of rapidly progressive glomerulonephritis. In contrast, non-proliferative diseases showed little or no Syk activation. Glomerular and interstitial cells exhibiting Syk activation correlated with renal function and systemic inflammation. Next, we examined mice with conditional Syk gene deletion in myeloid cells (SykMy) versus Sykf/f littermate controls in nephrotoxic serum nephritis - a model of rapidly progressive glomerulonephritis. Control Sykf/f mice featured a transient neutrophil influx at 3 h and severe disease on day 9 of nephrotoxic serum nephritis, with crescent formation, macrophage infiltration, inflammation, kidney fibrosis, and renal dysfunction. In contrast, SykMy mice had significantly reduced neutrophil and macrophage infiltration despite equivalent glomerular deposition of humoral reactants. SykMy mice exhibited reduced crescent formation, inflammation, and fibrosis, with improved renal function on day 9 of nephrotoxic serum nephritis. In conclusion, Syk activation is prominent in infiltrating myeloid cells in human rapidly progressive glomerulonephritis, and functional studies demonstrate that Syk deletion in myeloid cells is protective in mouse nephrotoxic serum nephritis.
AB - Antibody-dependent activation of myeloid cells within the glomerulus plays a central role in rapidly progressive forms of glomerulonephritis. The spleen tyrosine kinase (Syk) is expressed by all leukocytes, except mature T cells, and is required for signalling via the B-cell receptor, Fc receptors, and some integrins. Syk has been proposed as a therapeutic target in glomerulonephritis. However, little is known of Syk activation in human kidney disease, while studies in experimental glomerulonephritis using non-selective Syk inhibitors require validation via conditional gene deletion. The current study addressed both of these important points. Syk activation (Tyr525/526 phosphorylation) was examined in a cohort of 96 patients with different glomerulonephritides. Syk activation was evident in infiltrating leukocytes, mainly neutrophils and macrophages, in 36/40 cases of rapidly progressive glomerulonephritis. In contrast, non-proliferative diseases showed little or no Syk activation. Glomerular and interstitial cells exhibiting Syk activation correlated with renal function and systemic inflammation. Next, we examined mice with conditional Syk gene deletion in myeloid cells (SykMy) versus Sykf/f littermate controls in nephrotoxic serum nephritis - a model of rapidly progressive glomerulonephritis. Control Sykf/f mice featured a transient neutrophil influx at 3 h and severe disease on day 9 of nephrotoxic serum nephritis, with crescent formation, macrophage infiltration, inflammation, kidney fibrosis, and renal dysfunction. In contrast, SykMy mice had significantly reduced neutrophil and macrophage infiltration despite equivalent glomerular deposition of humoral reactants. SykMy mice exhibited reduced crescent formation, inflammation, and fibrosis, with improved renal function on day 9 of nephrotoxic serum nephritis. In conclusion, Syk activation is prominent in infiltrating myeloid cells in human rapidly progressive glomerulonephritis, and functional studies demonstrate that Syk deletion in myeloid cells is protective in mouse nephrotoxic serum nephritis.
KW - crescent
KW - inflammation
KW - JNK
KW - macrophage
KW - neutrophil
KW - platelets
UR - http://www.scopus.com/inward/record.url?scp=84955177886&partnerID=8YFLogxK
U2 - 10.1002/path.4598
DO - 10.1002/path.4598
M3 - Article
C2 - 26251216
AN - SCOPUS:84955177886
SN - 0022-3417
VL - 238
SP - 10
EP - 20
JO - Journal of Pathology
JF - Journal of Pathology
IS - 1
ER -