Mutations in the gene encoding C8orf38 block complex I assembly by inhibiting production of the mitochondria-encoded subunit ND1

Matthew McKenzie, Elena Tucker, Alison Compton, Michael Lazarou, Christa George, David Thorburn, Michael Ryan

    Research output: Contribution to journalArticleResearchpeer-review

    52 Citations (Scopus)

    Abstract

    The assembly of complex I (NADH-ubiquinone oxidoreductase) is a complicated process, requiring the integration of 45 subunits encoded by both nuclear and mitochondrial DNAs into a structure of approximately 1 MDa. A number of assembly factors that aid complex I biogenesis have recently been described, including C8orf38. This protein was identified as an assembly factor by its evolutionary conservation in organisms containing complex I and by a C8orf38 mutation in a patient presenting with Leigh syndrome and isolated complex I deficiency. In this report, we have undertaken the characterization of C8orf38 and its role in complex I assembly. Analysis of mitochondria from fibroblasts of a patient harboring a C8orf38 mutation showed almost undetectable levels of steady-state complex I and defective biogenesis of the mtDNA-encoded subunit ND1. Complementation with wild-type C8orf38 restored the levels of both ND1 and complex I, confirming the C8orf38 mutation as the cause of the complex I defect in the patient. In the absence of ND1 in patient cells, early- and mid-stage intermediate complexes were still formed; however, assembly of late-stage intermediates was impaired, indicating a convergence point in the assembly process. While C8orf38 appears to behave at a step in complex I biogenesis similar to that of the assembly factor C20orf7, complementation studies showed that both proteins are required for ND1 synthesis/stabilization. We conclude that C8orf38 is a crucial factor required for the translation and/or integration of ND1 into an early-stage assembly intermediate and that mutation of C8orf38 disrupts the initial stages of complex I biogenesis.
    Original languageEnglish
    Pages (from-to)413 - 426
    Number of pages14
    JournalJournal of Molecular Biology
    Volume414
    Issue number3
    DOIs
    Publication statusPublished - 2011

    Cite this