TY - JOUR
T1 - Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network
AU - Schaub, Madeline
AU - Nussbaum, Justin
AU - Verkade, Heather
AU - Ober, Elke
AU - Stainier, Didier Y R
AU - Sakaguchi, Takaya
PY - 2012
Y1 - 2012
N2 - Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.
AB - Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.
UR - http://www.sciencedirect.com/science/article/pii/S001216061101445X
M3 - Article
SN - 0012-1606
VL - 363
SP - 128
EP - 137
JO - Developmental Biology
JF - Developmental Biology
IS - 1
ER -