Abstract
The movement of ammonium across biological membranes is mediated in both prokaryotic and eukaryotic systems by ammonium transport proteins which constitute a family of related sequences (called the AMT/MEP family). Interestingly, recent evidence suggests that human and mouse Rhesus proteins which display significant relatedness to AMT/MEP sequences may function as ammonium transporters. To add to the functional understanding of ammonium transport proteins, the sequence changes in 37 loss-of-function mutations within the Aspergillus nidulans ammonium permease gene, meaA, were characterized. Together with the identification of conserved AMT/MEP residues and regions, the mutational analysis predicted regions important for uptake activity. Specifically, a major facilitator superfamily like motif (161-GAVAERGR-168 in MeaA) may be important for the translocation of ammonium across the membrane as may the conserved Pro186 residue. A specific Gly447 to Asp mutation was introduced into MeaA and this mutant protein was found to trans-inhibit the activity of endogenous MeaA and the other A. nidulans ammonium transporter, MepA. These results suggest that MeaA may interact with itself and with MepA, although any hetero-interaction is not required for ammonium transport function. In addition, cross-feeding studies showed that MeaA and to a lesser extent MepA are also required for the retention of intracellular ammonium.
Original language | English |
---|---|
Pages (from-to) | 35-46 |
Number of pages | 12 |
Journal | Fungal Genetics and Biology |
Volume | 36 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jun 2002 |
Keywords
- Ammonium transport
- AMT
- Aspergillus nidulans
- Membrane proteins
- MEP
- Methylammonium permease