Museum exhibit identification challenge for the supervised domain adaptation and beyond

Piotr Koniusz, Yusuf Tas, Hongguang Zhang, Mehrtash Harandi, Fatih Porikli, Rui Zhang

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

3 Citations (Scopus)

Abstract

We study an open problem of artwork identification and propose a new dataset dubbed Open Museum Identification Challenge (Open MIC). It contains photos of exhibits captured in 10 distinct exhibition spaces of several museums which showcase paintings, timepieces, sculptures, glassware, relics, science exhibits, natural history pieces, ceramics, pottery, tools and indigenosus crafts. The goal of Open MIC is to stimulate research in domain adaptation, egocentric recognition and few-shot learning by providing a testbed complementary to the famous Office dataset which reaches ~90% accuracy. To form our dataset, we captured a number of images per art piece with a mobile phone and wearable cameras to form the source and target data splits, respectively. To achieve robust baselines, we build on a recent approach that aligns per-class scatter matrices of the source and target CNN streams. Moreover, we exploit the positive definite nature of such representations by using end-to-end Bregman divergences and the Riemannian metric. We present baselines such as training/evaluation per exhibition and training/evaluation on the combined set covering 866 exhibit identities. As each exhibition poses distinct challenges e.g., quality of lighting, motion blur, occlusions, clutter, viewpoint and scale variations, rotations, glares, transparency, non-planarity, clipping, we break down results w.r.t. these factors.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018
Subtitle of host publication15th European Conference Munich, Germany, September 8–14, 2018 Proceedings, Part XVI
EditorsVittorio Ferrari, Martial Hebert, Cristian Sminchisescu, Yair Weiss
Place of PublicationCham Switzerland
PublisherSpringer
Pages815-833
Number of pages19
ISBN (Electronic)9783030012700
ISBN (Print)9783030012694
DOIs
Publication statusPublished - 2018
EventEuropean Conference on Computer Vision 2018 - Munich, Germany
Duration: 8 Sep 201814 Sep 2018
Conference number: 15th
https://eccv2018.org/
https://link.springer.com/book/10.1007/978-3-030-01246-5 (Proceedings)

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume11220
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Computer Vision 2018
Abbreviated titleECCV 2018
CountryGermany
CityMunich
Period8/09/1814/09/18
Internet address

Cite this