Muscular strength training is associated with low arterial compliance and high pulse pressure

David A. Bertovic, Tamara K. Waddell, Christoph D. Gatzka, James D. Cameron, Anthony M. Dart, Bronwyn A. Kingwell

Research output: Contribution to journalArticleResearchpeer-review

187 Citations (Scopus)


Aerobic exercise training increases arterial compliance and reduces systolic blood pressure, but the effects of muscular strength training on arterial mechanical properties are unknown. We compared blood pressure, whole body arterial compliance, aortic impedance, aortic stiffness (measured by β- index and carotid pulse pressure divided by normalized systolic expansion [Ep]), pulse wave velocity, and left ventricular parameters in 19 muscular strength-trained athletes (mean±SD age, 26±4 years) and 19 sedentary controls (26±5 years). Subjects were healthy, non-steroid-using, nonsmoking males, and athletes had been engaged in a strength-training program with no aerobic component for a minimum of 12 months. There was no difference in maximum oxygen consumption between groups, but handgrip strength (mean±SEM, 44±2 versus 56±2 kg; P<0.01) and left ventricular mass (168±8 versus 190±8 g; P<0.05) were greater in athletes. Arterial stiffness was higher in athletes, as evidenced by lower whole body arterial compliance (0.40±0.04 versus 0.54±0.04 arbitrary compliance units; P=0.01), higher aortic characteristic impedance (1.55±0.13 versus 1.18±0.08 mm Hg · s · cm-1; P<0.05), β-index (4.6±0.2 versus 3.8±0.4; P<0.05), and ln Ep (10.86±0.06 versus 10.60±0 08; P<0.01) Femoral-dorsalis pedis pulse wave velocity was also higher in the athletes, but carotid-femoral pulse wave velocity was not different. Furthermore, both carotid (56±3 versus 44±2 mmHg; P<0.001) and brachial (60±3 versus 50±2 mm Hg; P<0.01) pulse pressures were higher in the athletes, but mean arterial pressure and resting heart rate did not differ between groups. These data indicate that both the proximal aorta and the leg arteries are stiffer in strength-trained individuals and contribute to a higher cardiac afterload.

Original languageEnglish
Pages (from-to)1385-1391
Number of pages7
Issue number6
Publication statusPublished - Jun 1999
Externally publishedYes


  • Compliance
  • Exercise
  • Mechanical properties, arterial
  • Stiffness

Cite this