Abstract
A fully adaptive finite volume multiresolution scheme for one‐dimensional strongly degenerate parabolic equations with discontinuous flux modelling an extended clarifier‐thickener, is presented. The numerical scheme is based on a finite volume discretization using the approximation of Engquist‐Osher for the flux and explicit time stepping. Cell averages multiresolution scheme speeds up CPU time and memory requirements. A particular feature of our scheme is the storage of the multiresolution representation of the solution in a dynamic graded tree.
Original language | English |
---|---|
Title of host publication | Proceedings in Applied Mathematics and Mechanics |
Subtitle of host publication | Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting |
Place of Publication | Germany |
Pages | 1041803-1041804 |
Volume | 7 |
DOIs | |
Publication status | Published - 2007 |