Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders

Fen Huang, Xizhong An, Yuxi Zhang, Aibing Yu

Research output: Contribution to journalArticleResearchpeer-review

18 Citations (Scopus)

Abstract

Multi-particle finite element method (MPFEM) is utilized to numerically study the 2D compaction of binary Al/SiC composite powders. Different initial packing structures with various Al/SiC particle size ratios and compositions are constructed and imported into FEM model for compaction. In the whole process, the macro and micro properties of the compacts are monitored and characterized, and the densification mechanism is identified. The results show that the densification process and the properties of the compacts are determined by initial powder packing structures. In the compaction of ordered initial packings, the force chains in the compacts are ordered with uniform distributions and the deformation of Al particles is regular. While in the compaction of random initial packings, the force chains in the compacts are disordered and the deformation of Al particles is irregular; in this case, the force chain structure is mainly determined by the contacted SiC particles. The compaction densification of the composite powder and corresponding properties of the compacts are influenced by the packing state, size and number of SiC particles in the initial packing structure.

Original languageEnglish
Pages (from-to)39-48
Number of pages10
JournalPowder Technology
Volume314
DOIs
Publication statusPublished - 1 Jun 2017

Keywords

  • Al/SiC composite powders
  • Compaction
  • Densification dynamics and mechanism
  • Multi-particle finite element method
  • Multi-scale modeling

Cite this