TY - JOUR
T1 - Mucosal vaccines
T2 - Non toxic derivatives of LT and CT as mucosal adjuvants
AU - Pizza, M.
AU - Giuliani, M. M.
AU - Fontana, M. R.
AU - Monaci, E.
AU - Douce, G.
AU - Dougan, G.
AU - Mills, K. H.G.
AU - Rappuoli, R.
AU - Del Giudice, G.
PY - 2001/3/21
Y1 - 2001/3/21
N2 - Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans.
AB - Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans.
KW - Detoxified derivatives of CT and LT
KW - LTK63
KW - LTR72
KW - Mucosal adjuvants
KW - Mucosal vaccines
UR - http://www.scopus.com/inward/record.url?scp=0035925592&partnerID=8YFLogxK
U2 - 10.1016/S0264-410X(00)00553-3
DO - 10.1016/S0264-410X(00)00553-3
M3 - Article
C2 - 11257389
AN - SCOPUS:0035925592
VL - 19
SP - 2534
EP - 2541
JO - Vaccine
JF - Vaccine
SN - 0264-410X
IS - 17-19
ER -