Projects per year
Abstract
Despite recent breakthroughs in identifying mucosal-associated invariant T (MAIT) cell antigens (Ags), the precise requirements for in vivo MAIT cell responses to infection remain unclear. Using major histocompatibility complex–related protein 1 (MR1) tetramers, the MAIT cell response was investigated in a model of bacterial lung infection employing riboflavin gene-competent and -deficient bacteria. MAIT cells were rapidly enriched in the lungs of C57BL/6 mice infected with Salmonella Typhimurium, comprising up to 50% of αβ-T cells after 1 week. MAIT cell accumulation was MR1-dependent, required Ag derived from the microbial riboflavin synthesis pathway, and did not occur in response to synthetic Ag, unless accompanied by a Toll-like receptor agonist or by co-infection with riboflavin pathway-deficient S. Typhimurium. The MAIT cell response was associated with their long-term accumulation in the lungs, draining lymph nodes and spleen. Lung MAIT cells from infected mice displayed an activated/memory phenotype, and most expressed the transcription factor retinoic acid–related orphan receptor γt. T-bet expression increased following infection. The majority produced interleukin-17 while smaller subsets produced interferon-γ or tumor necrosis factor, detected directly ex vivo. Thus the activation and expansion of MAIT cells coupled with their pro-inflammatory cytokine production occurred in response to Ags derived from microbial riboflavin synthesis and was augmented by co-stimulatory signals.
Original language | English |
---|---|
Pages (from-to) | 58-68 |
Number of pages | 11 |
Journal | Mucosal Immunology |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2017 |
Projects
- 2 Finished
-
ARC Centre of Excellence in Advanced Molecular Imaging
Whisstock, J., Abbey, B., Nugent, K., Quiney, H. M., Godfrey, D. I., Heath, W., Fairlie, D., Chapman, H., Peele, A., Davey, J. & Wittmann, A.
30/06/14 → 31/03/21
Project: Research
-
Fighting infection: exploiting host-pathogen interactions
Lithgow, T., Hartland, E. L., Stow, J., Strugnell, R. A. & Teasdale, R. D.
National Health and Medical Research Council (NHMRC) (Australia)
1/01/11 → 31/12/15
Project: Research
Equipment
-
Australian Synchrotron
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility