Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning - clinical application perspectives

Mubeen Mohamed Afzal Janmohamed, Duong Nhu, Levin Kuhlmann, Amanda Gilligan, Chang Wei Tan, Piero Perucca, Terence John O'Brien, Patrick Kwan

Research output: Contribution to journalReview ArticleResearchpeer-review

11 Citations (Scopus)

Abstract

The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.

Original languageEnglish
Article numberfcac218
Number of pages15
JournalBrain Communications
Volume4
Issue number5
DOIs
Publication statusPublished - 29 Aug 2022

Keywords

  • automated detection
  • deep learning
  • EEG
  • epilepsy
  • epileptiform abnormalities

Cite this