Abstract
Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.
Original language | English |
---|---|
Pages (from-to) | 1257-1272 |
Number of pages | 16 |
Journal | Journal of Gastroenterology and Hepatology |
Volume | 31 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jul 2016 |
Externally published | Yes |
Keywords
- diffuse gastric cancer
- Helicobacter pylori
- intestinal-type gastric cancer
- mouse model