Projects per year
Abstract
Hypothesis: Well-controlled micropatterned nanocellulose films are able to be fabricated via spray coating onto a micropatterned impermeable moulded surface. The micropattern size is able control the directionality of wicking fluid flow. Experiments: Using photolithography and etching techniques, silicon moulds with channel widths of 5–500 µm and depths of 6, 12 and 18 µm were fabricated. Micropatterned nanocellulose sheets were formed by spray coating nanofibre suspensions onto the moulds. We also investigate the effect the dimensions of these micropatterned nanocellulose films have on wicking fluids. Findings: Micropatterns were imparted on the surface of nanocellulose films which resulted in three well-defined regimes of conformation with the moulds: full, partial and no conformation. These regimes were driven by the aspect ratio (channel depth/width) of the moulds. Achieved channel widths and depths were compared to those possible with other micropattern fabrication techniques. The directionality of the wicking water droplets can be controlled with the micropatterned channel. Channels within the full conformation regime resulted in increased directionality of fluid flow compared with those not within this regime. This research demonstrates the industrially scalable process of spray coating has potential to serve as the foundation for a new generation of paper-based microfluidic devices.
Original language | English |
---|---|
Pages (from-to) | 162-172 |
Number of pages | 11 |
Journal | Journal of Colloid and Interface Science |
Volume | 587 |
DOIs | |
Publication status | Published - Apr 2021 |
Keywords
- Aspect ratio
- Deep reactive ion etch
- Micropattern
- Moulding
- Nanocellulose
- Patterned roughness
- Photolithography
- Spray coating
- Wicking
Projects
- 1 Active
-
ARC Research Hub for Processing Lignocellulosics into High Value Products
Garnier, G., Batchelor, W., Simon, G., Haritos, V., Patti, A., Saito, K., Griesser, H., Paull, B., Tanner, J., Spinnler, H., Allais, F., Richardson, D., Mackay, A., Carter, S., Faltas, R., Edye, L., Hendriks, D., Karmakar, N., Bhattacharya, S. & Hawe, N.
Monash University – Internal University Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal Department Contribution, Paper Australia Pty Ltd, Leaf Resources Pty Ltd, Department of State Growth (Tasmania), University of Tasmania, University of South Australia, Agro Biotechnologies Industrielles, Visy Industries Australia Pty Ltd (trading as Visy Industries), Norske Skog Paper Mills (Australia) Pty Ltd, Orora Limited (trading as AMCOR Australia)
10/01/18 → 31/12/24
Project: Research