Abstract
Glassy, disubstituted acetylene-based polymers exhibit extremely high gas permeabilities and high vapor/gas selectivities, which is quite unusual for conventional glassy polymers such as polysulfone. Diffusion coefficients of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) and poly[diphenylacetylene] (PDPA) were obtained using both molecular simulation and experimental techniques. PTMSDPA, a disubstituted glassy acetylene-based polymer, exhibits higher diffusivity than its desilylated analogue, PDPA. Simulation results are in good agreement with experimental data. Cavity size (free volume) distributions of both polymers are also obtained using an energetic-based algorithm (in't Veld et al., J. Phys. Chem. B 2000, 104, 12028) developed recently. Larger cavities in PTMSDPA contribute to its higher diffusivity, and higher permeability.
Original language | English |
---|---|
Pages (from-to) | 12666-12672 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry B |
Volume | 110 |
Issue number | 25 |
DOIs | |
Publication status | Published - 29 Jun 2006 |
Externally published | Yes |