TY - JOUR
T1 - Modulation of ongoing EMG by different classes of low-threshold mechanoreceptors in the human hand
AU - McNulty, P. A.
AU - Macefield, V. G.
PY - 2001/12/15
Y1 - 2001/12/15
N2 - 1. We have previously demonstrated that the input from single FA I and SA II cutaneous mechanoreceptors in the glabrous skin of the human hand is sufficiently strong to modulate ongoing EMG of muscles acting on the digits. Some unresolved issues have now been addressed. 2. Single cutaneous (n = 60), joint (n = 2) and muscle spindle (n = 34) afferents were recorded via tungsten microelectrodes inserted into the median and ulnar nerves at the wrist. Spike-triggered averaging was used to investigate synaptic coupling between these afferents and muscles acting on the digits. The activity of 37% of FA I (7/19), 20% of FA II (1/5) and 52% of SA II afferents (11/21) evoked a reflex response. The discharge from muscle spindles, 15 SA I and two joint afferents did not modulate EMG activity. 3. Two types of reflex responses were encountered: a single excitatory response produced by irregularly firing afferents, or a cyclic modulation evoked by regularly discharging afferents. Rhythmic stimulation of one FA I afferent generated regularly occurring bursts which corresponded to the associated cyclic EMG response. 4. Selectively triggering from the first or last spike of each burst of one FA I afferent altered the averaged EMG profile, suggesting that afferent input modulates the associated EMG and not vice versa. 5. The discharge from single FA I, FA II and SA II afferents can modify ongoing voluntary EMG in muscles of the human hand, presumably via a spinally mediated oligosynaptic pathway. Conversely, we saw no evidence of such modulation by SA I, muscle spindle or joint afferents.
AB - 1. We have previously demonstrated that the input from single FA I and SA II cutaneous mechanoreceptors in the glabrous skin of the human hand is sufficiently strong to modulate ongoing EMG of muscles acting on the digits. Some unresolved issues have now been addressed. 2. Single cutaneous (n = 60), joint (n = 2) and muscle spindle (n = 34) afferents were recorded via tungsten microelectrodes inserted into the median and ulnar nerves at the wrist. Spike-triggered averaging was used to investigate synaptic coupling between these afferents and muscles acting on the digits. The activity of 37% of FA I (7/19), 20% of FA II (1/5) and 52% of SA II afferents (11/21) evoked a reflex response. The discharge from muscle spindles, 15 SA I and two joint afferents did not modulate EMG activity. 3. Two types of reflex responses were encountered: a single excitatory response produced by irregularly firing afferents, or a cyclic modulation evoked by regularly discharging afferents. Rhythmic stimulation of one FA I afferent generated regularly occurring bursts which corresponded to the associated cyclic EMG response. 4. Selectively triggering from the first or last spike of each burst of one FA I afferent altered the averaged EMG profile, suggesting that afferent input modulates the associated EMG and not vice versa. 5. The discharge from single FA I, FA II and SA II afferents can modify ongoing voluntary EMG in muscles of the human hand, presumably via a spinally mediated oligosynaptic pathway. Conversely, we saw no evidence of such modulation by SA I, muscle spindle or joint afferents.
UR - http://www.scopus.com/inward/record.url?scp=0035893913&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2001.012664
DO - 10.1113/jphysiol.2001.012664
M3 - Article
C2 - 11744774
AN - SCOPUS:0035893913
SN - 0022-3751
VL - 537
SP - 1021
EP - 1032
JO - The Journal of Physiology
JF - The Journal of Physiology
IS - 3
ER -