Modulating transparency and colour of cellulose nanocrystal composite films by varying polymer molecular weight

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)


Hypothesis: Cellulose nanocrystals (CNC) can produce photonic composite films that selectively reflect light based on their periodic cholesteric structure. The hypothesis of this research is that by incorporating water-soluble polymer, photonic properties of CNC composite film can be designed by manipulating the polymer molecular weight. Experimental: Flexible free-standing composite films of five different poly (ethylene glycol) (PEG) molecular weights were prepared via air drying under a controlled environment, and characterised by reflectance UV–vis spectrometer, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Films with each molecular weight were investigated over a concentration range. Findings: The colour and transmission haze of the composite films was modified by varying both the PEG molecular weight and concentration. Depending on the molecular weight, the films were able to reflect light from the UV region (242 nm) across the visible spectrum to the near-infrared region (832 nm). Different trends in variation of the reflected light based on the molecular weight was found with increasing PEG concentration and was explained by weak depletion interactions occurring between CNC and PEG, which was reduced with increasing PEG molecular weight.

Original languageEnglish
Pages (from-to)216-224
Number of pages9
JournalJournal of Colloid and Interface Science
Publication statusPublished - 15 Feb 2021


  • CNC
  • Depletion interaction
  • Films
  • Haze
  • Iridescence
  • PEG

Cite this