TY - JOUR
T1 - Modular molecules
T2 - site-selective metal substitution, photoreduction, and chirality in polyoxometalate hybrids
AU - Vonci, Michele
AU - Bagherjeri, Fateme Akhlaghi
AU - Hall, Peter D
AU - Gable, Robert W
AU - Zavras, Athanasios
AU - O'Hair, Richard Alfred John
AU - Liu, Yuping
AU - Zhang, Jie
AU - Field, Matthew R
AU - Taylor, Matthew B
AU - Plessis, Johan Du
AU - Bryant, Adam
AU - Riley, Mark Julian
AU - Sorace, Lorenzo
AU - Aparicio, Pablo A
AU - Lopez, Xavier
AU - Poblet, Josep M
AU - Ritchie, Chris
AU - Boskovic, Colette
PY - 2014
Y1 - 2014
N2 - The first members of a promising new family of hybrid amino acid–polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium‐tungstoarsenate structural backbone, followed by crystallization with p‐methylbenzylammonium (p‐MeBzNH3+) cations, affords (p‐MeBzNH3)6K2(GlyH)[AsIII4(YIIIWVI3)WVI44YIII4O159(Gly)8‐ (H2O)14]⋅47 H2O (1) and enantiomorphs (p‐MeBzNH3)15(NleH)3 [AsIII4(MoV2MoVI2)WVI44YIII4O160(Nle)9(H2O)11][AsIII4(MoVI2WVI2)‐ WVI44YIII4O160(Nle)9(H2O)11] (generically designated 2: L‐Nle, 2 a; D‐Nle, 2 b). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site‐selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small‐angle X‐ray scattering studies confirm maintenance of the structure of the polyanions of 2, while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.
AB - The first members of a promising new family of hybrid amino acid–polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium‐tungstoarsenate structural backbone, followed by crystallization with p‐methylbenzylammonium (p‐MeBzNH3+) cations, affords (p‐MeBzNH3)6K2(GlyH)[AsIII4(YIIIWVI3)WVI44YIII4O159(Gly)8‐ (H2O)14]⋅47 H2O (1) and enantiomorphs (p‐MeBzNH3)15(NleH)3 [AsIII4(MoV2MoVI2)WVI44YIII4O160(Nle)9(H2O)11][AsIII4(MoVI2WVI2)‐ WVI44YIII4O160(Nle)9(H2O)11] (generically designated 2: L‐Nle, 2 a; D‐Nle, 2 b). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site‐selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small‐angle X‐ray scattering studies confirm maintenance of the structure of the polyanions of 2, while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.
U2 - 10.1002/chem.201403222
DO - 10.1002/chem.201403222
M3 - Article
SN - 0947-6539
VL - 20
SP - 14102
EP - 14111
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 43
ER -