miR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling

Aideen S Collins, Claire McCoy, Cliona O'Farrelly, Nigel J Stevenson

Research output: Contribution to journalArticleResearchpeer-review

86 Citations (Scopus)

Abstract

Suppressors of cytokine signalling (SOCS) proteins are classic inhibitors of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Many cytokines and pathogenic mediators induce expression of SOCS, which act in a negative feedback loop to inhibit further signal transduction. SOCS mRNA expression is regulated by DNA binding of STAT proteins, however, their post-transcriptional regulation is poorly understood. microRNAs (miRNAs) are small non-coding RNAs that bind to complementary sequences on target mRNAs, often silencing gene expression. miR-19a has been shown to regulate SOCS1 expression during mutiple myeloma and be induced by the anti-viral cytokine interferon-(IFN)-alpha, suggesting a role in the regulation of the JAK-STAT pathway. This study aimed to identify targets of miR-19a in the JAK-STAT pathway and elucidate the functional consequences. Bioinformatic analysis identified highly conserved 3 UTR miR-19a target sequences in several JAK-STAT associated genes, including SOCS1, SOCS3, SOCS5 and Cullin (Cul) 5. Functional studies revealed that miR-19a significantly decreased SOCS3 mRNA and protein, while a miR-19a antagomir specifically reversed its inhibitory effect. Furthermore, miR-19a-mediated reduction of SOCS3 enhanced IFN-alpha and interleukin (IL)-6 signal transduction through STAT3. These results reveal a novel mechanism by which miR-19a may augment JAK-STAT signal transduction via control of SOCS3 expression and are fundamental to the understanding of inflammatory regulation.
Original languageEnglish
Article numbere69090
Number of pages8
JournalPLoS ONE
Volume8
Issue number7
DOIs
Publication statusPublished - 2013
Externally publishedYes

Cite this