TY - JOUR
T1 - miR-19a: an effective regulator of SOCS3 and enhancer of JAK-STAT signalling
AU - Collins, Aideen S
AU - McCoy, Claire
AU - O'Farrelly, Cliona
AU - Stevenson, Nigel J
PY - 2013
Y1 - 2013
N2 - Suppressors of cytokine signalling (SOCS) proteins are classic inhibitors of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Many cytokines and pathogenic mediators induce expression of SOCS, which act in a negative feedback loop to inhibit further signal transduction. SOCS mRNA expression is regulated by DNA binding of STAT proteins, however, their post-transcriptional regulation is poorly understood. microRNAs (miRNAs) are small non-coding RNAs that bind to complementary sequences on target mRNAs, often silencing gene expression. miR-19a has been shown to regulate SOCS1 expression during mutiple myeloma and be induced by the anti-viral cytokine interferon-(IFN)-alpha, suggesting a role in the regulation of the JAK-STAT pathway. This study aimed to identify targets of miR-19a in the JAK-STAT pathway and elucidate the functional consequences. Bioinformatic analysis identified highly conserved 3 UTR miR-19a target sequences in several JAK-STAT associated genes, including SOCS1, SOCS3, SOCS5 and Cullin (Cul) 5. Functional studies revealed that miR-19a significantly decreased SOCS3 mRNA and protein, while a miR-19a antagomir specifically reversed its inhibitory effect. Furthermore, miR-19a-mediated reduction of SOCS3 enhanced IFN-alpha and interleukin (IL)-6 signal transduction through STAT3. These results reveal a novel mechanism by which miR-19a may augment JAK-STAT signal transduction via control of SOCS3 expression and are fundamental to the understanding of inflammatory regulation.
AB - Suppressors of cytokine signalling (SOCS) proteins are classic inhibitors of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Many cytokines and pathogenic mediators induce expression of SOCS, which act in a negative feedback loop to inhibit further signal transduction. SOCS mRNA expression is regulated by DNA binding of STAT proteins, however, their post-transcriptional regulation is poorly understood. microRNAs (miRNAs) are small non-coding RNAs that bind to complementary sequences on target mRNAs, often silencing gene expression. miR-19a has been shown to regulate SOCS1 expression during mutiple myeloma and be induced by the anti-viral cytokine interferon-(IFN)-alpha, suggesting a role in the regulation of the JAK-STAT pathway. This study aimed to identify targets of miR-19a in the JAK-STAT pathway and elucidate the functional consequences. Bioinformatic analysis identified highly conserved 3 UTR miR-19a target sequences in several JAK-STAT associated genes, including SOCS1, SOCS3, SOCS5 and Cullin (Cul) 5. Functional studies revealed that miR-19a significantly decreased SOCS3 mRNA and protein, while a miR-19a antagomir specifically reversed its inhibitory effect. Furthermore, miR-19a-mediated reduction of SOCS3 enhanced IFN-alpha and interleukin (IL)-6 signal transduction through STAT3. These results reveal a novel mechanism by which miR-19a may augment JAK-STAT signal transduction via control of SOCS3 expression and are fundamental to the understanding of inflammatory regulation.
UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718810/pdf/pone.0069090.pdf
U2 - 10.1371/journal.pone.0069090
DO - 10.1371/journal.pone.0069090
M3 - Article
SN - 1932-6203
VL - 8
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e69090
ER -