TY - JOUR
T1 - Mining associated patterns from wireless sensor networks
AU - Rashid, Md Mamunur
AU - Gondal, Iqbal
AU - Kamruzzaman, Joarder
PY - 2015
Y1 - 2015
N2 - Mining of sensor data for useful knowledge extraction is a very challenging task. Existing works generate sensor association rules using occurrence frequency of patterns to extract the knowledge. These techniques often generate huge number of rules, most of which are non-informative or fail to reflect true correlation among sensor data. In this paper, we propose a new type of behavioral pattern called associated sensor patterns which capture association-like co-occurrences as well as temporal correlations which are linked with such co-occurrences. To capture such patterns a compact tree structure, called associated sensor pattern tree (ASP-tree) and a mining algorithm (ASP) are proposed which use pattern growth-based approach to generate all associated patterns with only one scan over dataset. Moreover, when data stream flows through, old information may lose significance for the current time. To capture significance of recent data, ASP-tree is further enhanced to SWASP-tree by adopting sliding observation window and updating the tree structure accordingly. Finally, window size is made dynamically adaptive to ensure efficient resource usage. Different characteristics of the proposed techniques and their computational complexity are presented. Experimental results show that our approach is very efficient in discovering associated sensor patterns and outperforms existing techniques.
AB - Mining of sensor data for useful knowledge extraction is a very challenging task. Existing works generate sensor association rules using occurrence frequency of patterns to extract the knowledge. These techniques often generate huge number of rules, most of which are non-informative or fail to reflect true correlation among sensor data. In this paper, we propose a new type of behavioral pattern called associated sensor patterns which capture association-like co-occurrences as well as temporal correlations which are linked with such co-occurrences. To capture such patterns a compact tree structure, called associated sensor pattern tree (ASP-tree) and a mining algorithm (ASP) are proposed which use pattern growth-based approach to generate all associated patterns with only one scan over dataset. Moreover, when data stream flows through, old information may lose significance for the current time. To capture significance of recent data, ASP-tree is further enhanced to SWASP-tree by adopting sliding observation window and updating the tree structure accordingly. Finally, window size is made dynamically adaptive to ensure efficient resource usage. Different characteristics of the proposed techniques and their computational complexity are presented. Experimental results show that our approach is very efficient in discovering associated sensor patterns and outperforms existing techniques.
UR - http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6880343
U2 - 10.1109/TC.2014.2349515
DO - 10.1109/TC.2014.2349515
M3 - Article
VL - 64
SP - 1998
EP - 2011
JO - IEEE Transactions on Computers
JF - IEEE Transactions on Computers
SN - 0018-9340
IS - 7
ER -