TY - JOUR
T1 - Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease
AU - Ravichandran, Rajeswari
AU - Venugopal, Jayarama Reddy
AU - Sundarrajan, Subramanian
AU - Mukherjee, Shayanti
AU - Ramakrishna, Seeram
PY - 2012
Y1 - 2012
N2 - Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slip-page, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review sum-marizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future.
AB - Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slip-page, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review sum-marizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future.
KW - Biomaterials
KW - Cardiac-tissue engineering
KW - Injectable system
KW - Myocardial infarction
UR - http://www.scopus.com/inward/record.url?scp=84875838006&partnerID=8YFLogxK
U2 - 10.2147/IJN.S37575
DO - 10.2147/IJN.S37575
M3 - Review Article
C2 - 23271906
AN - SCOPUS:84875838006
SN - 1176-9114
VL - 7
SP - 5969
EP - 5994
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -