Mineralocorticoid action and sodium-hydrogen exchange: Studies in experimental cardiac fibrosis

Research output: Contribution to journalArticleResearchpeer-review

45 Citations (Scopus)

Abstract

There is increasing evidence that the trigger for cardiac fibrosis in response to mineralocorticoid/salt administration is coronary vasculitis and that effects can be seen within days of deoxycorticosterone acetate (DOCA) administration. Furthermore, rapid, nongenomic mineralocorticoid effects on the sodium-hydrogen exchanger (NHE-1) in vascular smooth muscle cells have recently been described. That this mechanism may act as an inflammatory or profibrotic signal was tested by comparing the specific NHE-1 antagonist cariporide and the mineralocorticoid receptor antagonist K canrenoate in the rat model of mineralocorticoid/salt perivascular fibrosis over 8 d of DOCA/salt administration. Interstitial collagen, inflammatory cell infiltration, and inflammatory markers were determined. DOCA elevated blood pressure above control, cariporide +DOCA, or K canrenoate +DOCA rats, without cardiac hypertrophy. At 8 d interstitial collagen was significantly elevated in the DOCA-alone group, with levels in cariporide- and K canrenoate-treated rats not different from control. Expression of osteopontin, cyclooxygenase-2, and ED-1 were elevated by DOCA treatment, blocked by potassium canrenoate, and (for ED-1 and osteopontin) partially reduced by cariporide. These results suggest mineralocorticoid/salt-induced cardiac fibrosis may involve coronary vascular smooth muscle cell NHE-1 activity as a possible contributor to the cascade of transcriptional events that produce the characteristic coronary vasculitis seen with excess mineralocorticoid and salt.

Original languageEnglish
Pages (from-to)3848-3851
Number of pages4
JournalEndocrinology
Volume144
Issue number9
DOIs
Publication statusPublished - 1 Sep 2003
Externally publishedYes

Cite this