Abstract
A few-layer graphene (FLG) composite material was synthesized using a rich reservoir and low-cost coal under the microwave-assisted catalytic graphitization process. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used to evaluate the properties of the FLG sample. A well-developed microstructure and higher graphitization degree were achieved under microwave heating at 1300◦ C using the S5% dual (Fe-Ni) catalyst for 20 min. In addition, the synthesized FLG sample encompassed the Raman spectrum 2D band at 2700 cm−1, which showed the existence of a few-layer graphene structure. The high-resolution TEM (transmission electron microscopy) image investigation of the S5% Fe-Ni sample confirmed that the fabricated FLG material consisted of two to seven graphitic layers, promoting the fast lithium-ion diffusion into the inner surface. The S5% Fe-Ni composite material delivered a high reversible capacity of 287.91 mAhg−1 at 0.1 C with a higher Coulombic efficiency of 99.9%. In contrast, the single catalyst of S10% Fe contained a reversible capacity of 260.13 mAhg−1 at 0.1 C with 97.96% Coulombic efficiency. Furthermore, the dual catalyst-loaded FLG sample demonstrated a high capacity—up to 95% of the initial reversible capacity retention—after 100 cycles. This study revealed the potential feasibility of producing FLG materials from bituminous coal used in a broad range as anode materials for lithium-ion batteries (LIBs).
Original language | English |
---|---|
Article number | 6468 |
Number of pages | 15 |
Journal | Materials |
Volume | 14 |
Issue number | 21 |
DOIs | |
Publication status | Published - 28 Oct 2021 |
Keywords
- Catalytic graphitization
- Coal
- Few-layer graphene
- Lithium-ion batteries
- Microwave