TY - JOUR
T1 - Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting
AU - Colas, Jean-Christophe
AU - Shi, Wanlong
AU - Malleswara Rao, V SN
AU - Omri, Abdel Wahab
AU - Mozafari, Mohammad Reza
AU - Singh, Harjinder
PY - 2007
Y1 - 2007
N2 - Nanoencapsulation may improve activity of protein or polypeptide antimicrobials against a variety of microorganisms. In this study, nanoliposomes prepared from different lipids (Phospholipon 90H, Phospholipon 100H, dipalmitoylphosphatidylcholine (DPPC), stearylamine (SA), dicetyl phosphate (DCP) and cholesterol) by a new, non-toxic and scalable method, were tested for their capacity to encapsulate nisin Z and target bacteria (Bacillus subtilis and Pseudomonasaeruginosa). Factors affecting the entrapment efficiency (charge and cholesterol concentration in the vesicles) and stability of nanoliposomes were assessed. The nanoliposomes and their bacterial targeting were visualised, using different microscopes under air and liquid environments. Nisin was entrapped in different nanoliposomes with encapsulation efficiencies (EE) ranging from 12 to 54 . Anionic vesicles possessed the highest EE for nisin while increase in cholesterol content in lipid membranes up to 20 molar ratio resulted in a reduction in EE. Stability of nanoliposome-encapsulated nisin was demonstrated for at least 14 months at 4 degrees C (DPPC:DCP:CHOL vesicles) and for 12 months at 25 degrees C (DPPC:SA:CHOL vesicles).
AB - Nanoencapsulation may improve activity of protein or polypeptide antimicrobials against a variety of microorganisms. In this study, nanoliposomes prepared from different lipids (Phospholipon 90H, Phospholipon 100H, dipalmitoylphosphatidylcholine (DPPC), stearylamine (SA), dicetyl phosphate (DCP) and cholesterol) by a new, non-toxic and scalable method, were tested for their capacity to encapsulate nisin Z and target bacteria (Bacillus subtilis and Pseudomonasaeruginosa). Factors affecting the entrapment efficiency (charge and cholesterol concentration in the vesicles) and stability of nanoliposomes were assessed. The nanoliposomes and their bacterial targeting were visualised, using different microscopes under air and liquid environments. Nisin was entrapped in different nanoliposomes with encapsulation efficiencies (EE) ranging from 12 to 54 . Anionic vesicles possessed the highest EE for nisin while increase in cholesterol content in lipid membranes up to 20 molar ratio resulted in a reduction in EE. Stability of nanoliposome-encapsulated nisin was demonstrated for at least 14 months at 4 degrees C (DPPC:DCP:CHOL vesicles) and for 12 months at 25 degrees C (DPPC:SA:CHOL vesicles).
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17689087
M3 - Article
SN - 0968-4328
VL - 38
SP - 841
EP - 847
JO - Micron
JF - Micron
IS - 8
ER -