TY - JOUR
T1 - MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies
AU - Molnarfi, Nicolas
AU - Schulze-Topphoff, Ulf
AU - Weber, Martin S
AU - Patarroyo, Juan C
AU - Prod'Homme, Thomas
AU - Varrin-Doyer, Michel
AU - Shetty, Aparna
AU - Linington, Christopher
AU - Slavin, Anthony J
AU - Hidalgo, Juan
AU - Jenne, Dieter E
AU - Wekerle, Hartmut
AU - Sobel, Raymond A
AU - Bernard, Claude Charles Andre
AU - Shlomchik, Mark J
AU - Zamvil, Scott S
PY - 2013
Y1 - 2013
N2 - Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B-MHC II(-/-)), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)-specific B cell receptor (BCR; IgH(MOG-mem)) but cannot secrete antibodies. B-MHC II(-/-) mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell- and B cell-dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B-MHC II(-/-) mice. In the absence of antibodies, IgH(MOG-mem) mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle-like structures were observed in IgH(MOG-mem) mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell-targeted therapies.
AB - Whether B cells serve as antigen-presenting cells (APCs) for activation of pathogenic T cells in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) is unclear. To evaluate their role as APCs, we engineered mice selectively deficient in MHC II on B cells (B-MHC II(-/-)), and to distinguish this function from antibody production, we created transgenic (Tg) mice that express the myelin oligodendrocyte glycoprotein (MOG)-specific B cell receptor (BCR; IgH(MOG-mem)) but cannot secrete antibodies. B-MHC II(-/-) mice were resistant to EAE induced by recombinant human MOG (rhMOG), a T cell- and B cell-dependent autoantigen, and exhibited diminished Th1 and Th17 responses, suggesting a role for B cell APC function. In comparison, selective B cell IL-6 deficiency reduced EAE susceptibility and Th17 responses alone. Administration of MOG-specific antibodies only partially restored EAE susceptibility in B-MHC II(-/-) mice. In the absence of antibodies, IgH(MOG-mem) mice, but not mice expressing a BCR of irrelevant specificity, were fully susceptible to acute rhMOG-induced EAE, also demonstrating the importance of BCR specificity. Spontaneous opticospinal EAE and meningeal follicle-like structures were observed in IgH(MOG-mem) mice crossed with MOG-specific TCR Tg mice. Thus, B cells provide a critical cellular function in pathogenesis of central nervous system autoimmunity independent of their humoral involvement, findings which may be relevant to B cell-targeted therapies.
UR - http://jem.rupress.org/content/210/13/2921.full.pdf
U2 - 10.1084/jem.20130699
DO - 10.1084/jem.20130699
M3 - Article
VL - 210
SP - 2921
EP - 2937
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
SN - 0022-1007
IS - 13
ER -