TY - JOUR
T1 - Methylproamine protects against ionizing radiation by preventing DNA double-strand breaks
AU - Sprung, Carl
AU - Vasireddy, Raj
AU - Karagiannis, Tom
AU - Loveridge, Shannon
AU - Martin, Roger
AU - McKay, Michael
PY - 2010
Y1 - 2010
N2 - PURPOSE: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. MATERIALS AND METHODS: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (gammaH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. RESULTS: We found that methylproamine-treated cells had fewer gammaH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. CONCLUSIONS: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.
AB - PURPOSE: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. MATERIALS AND METHODS: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (gammaH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. RESULTS: We found that methylproamine-treated cells had fewer gammaH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. CONCLUSIONS: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.
UR - http://www.ncbi.nlm.nih.gov/pubmed/20732333
U2 - 10.1016/j.mrfmmm.2010.08.005
DO - 10.1016/j.mrfmmm.2010.08.005
M3 - Article
SN - 0027-5107
VL - 692
SP - 49
EP - 52
JO - Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
JF - Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
IS - 1-2
ER -