Projects per year
Abstract
The facile and scalable fabrication of ultrafine (<5 nm) nanoparticles (NPs) as effective catalysts is the key for enhancing the kinetics of most hydrogen storage materials (HSMs). The direct fabrication of ultrafine NPs in HSMs is obviously a challenge because of the inevitable NPs agglomeration during the thermo-reduction. Herein, we report a mechanochemical-force-driven procedure for the one-step preparation of Ni NPs (2–3 nm) in a MgH2 matrix, which capitalizes on the in situ bottom-up reduction of Ni-MOF-74 in the presence of MgH2 as a reducing and sacrificing agent at room temperature. Both theoretical calculations and experimental investigations show that ultrafine Ni NPs are much more effective on catalytic hydrogenation/dehydrogenation in Mg due to the size effect. These findings may facilitate the fabrication of other catalyzed HSMs using different MOFs as catalyst precursors
Original language | English |
---|---|
Pages (from-to) | 8294-8299 |
Number of pages | 6 |
Journal | Journal of Materials Chemistry A |
Volume | 3 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2015 |
Projects
- 2 Finished
-
Computer-Aided Design of High-Performance Photocatalysts for Solar Hydrogen Producion Based on Red Titanium Dioxide
Sun, C. (Primary Chief Investigator (PCI))
Australian Research Council (ARC)
1/01/14 → 31/12/17
Project: Research
-
To identify and understand highly reactive surfaces for solar hydrogen production
Sun, C. (Primary Chief Investigator (PCI)), Liu, G. (Partner Investigator (PI)) & Yang, H. G. (Partner Investigator (PI))
Australian Research Council (ARC)
1/01/13 → 31/12/17
Project: Research