Abstract
Mimetic functional membranes on solid support are now emerging for the development of membrane biosensor or for the study of membrane-mediated processes and should have an important impact on biodiagnostics. We established a method to reconstitute a membrane protein into a lipid membrane in a selective orientation on a solid support. Membrane protein OprM, a component of OprM-MexA-MexB multidrug efflux pump, solubilized in detergent was immobilized via its extracellular domain on aminosilane-modified silica surface. The oriented protein was reconstituted into a lipid membrane by detergent removal. The membrane protein reconstitution process carried out on silica nanoparticles and on planar silica surfaces was followed by cryo-electron microscopy (cryo-EM) and quartz crystal microbalance with dissipation monitoring (QCM-D) respectively. The selective protein orientation on aminosilane-modified silica surface was assessed by cryo-EM and was compared to the nonspecific protein deposition on silica surface. Finally, the binding of MexA, a periplasmic component of the tripartite efflux complex, was monitored with QCM-D on the oriented OprM protein monolayer. The large adsorbed mass gave a direct evidence of the high affinity of MexA with the periplasmic helical part of OprM.
Original language | English |
---|---|
Pages (from-to) | 2647-2654 |
Number of pages | 8 |
Journal | Langmuir |
Volume | 23 |
Issue number | 5 |
DOIs | |
Publication status | Published - 27 Feb 2007 |
Externally published | Yes |