Projects per year
Abstract
Advanced instrumental techniques have played a crucial role in providing experimental evidence of reaction intermediates and kinetic information needed to correlate reactivity and product selectivity with the intrinsic properties of electrocatalysts used in the electrochemical CO2 reduction reaction (eCO2RR). In this review article, new developments in instrumental techniques for the mechanistic study of the eCO2RR under in situ or operando conditions are surveyed. Initially, the reaction pathways for the eCO2RR proposed in the literature are introduced to provide a basic understanding of the eCO2RR mechanisms and also to demonstrate the complexity of this reaction. Next, commonly used theoretical approaches for mechanistic studies of the eCO2RR including electrokinetic studies and theoretical calculation/modelling are outlined. The advantages and limitations associated with these approaches are highlighted to emphasise the importance of undertaking mechanistic studies under in situ or operando conditions using spectroscopic and electrochemical techniques. The main focus of this review is to summarise the research progress and discuss the advantages and limitations associated with each technique. Finally, in the Summary and Future Outlook Section, recommendations on possible future directions for the field are given.
Original language | English |
---|---|
Article number | 100835 |
Number of pages | 22 |
Journal | Nano Today |
Volume | 31 |
DOIs | |
Publication status | Published - Apr 2020 |
Keywords
- CO reduction
- Electrocatalysis
- Electrochemical
- In situ
- Mechanism
- Operando
Projects
- 1 Finished
-
ARC Centre of Excellence for Electromaterials Science
Wallace, G. G., Forsyth, M., Macfarlane, D., Officer, D., Cook, M. J., Dodds, S., Spinks, G., Alici, G., Moulton, S., in het Panhuis, M., Kapsa, R. M. I., Higgins, M., Mozer, A., Crook, J., Innis, P., Coote, M. L., Wang, X., Howlett, P. C., Pringle, J. M., Hancock, L., Paull, B., Sparrow, R., Zhang, J., Spiccia, L., Diamond, D., Guldi, D., Kim, S. J., Unwin, P. & Watanabe, M.
Australian Research Council (ARC)
30/06/14 → 30/06/21
Project: Research