Abstract
Load modeling is very important to power system operation and control. Measurement-based load modeling has been widely practiced in recent years. Mathematically, measurement-based load modeling problem are closely related to the parameter identification area. Consequently, an efficient optimization method is needed to derive the load model parameters based on the feedback of estimation errors between the measurements and model outputs. This paper reports our work on applying genetic algorithms on measurement-based load modeling research. Due to its robustness to the initial guesses on the load model parameters, genetic algorithms are very suitable for load model parameter identification. Two cases including both the real measurement in a power station and the digital simulation are studied in the paper. For comparison purpose, the classical nonlinear least square estimation method is also applied to find the load model parameters. The simulated outputs from the load model confirm the efficiency of genetic algorithms in measurement-based load modeling analysis. Future work will focus on fastening the converging speed of the genetic algorithms, and/or utilizing more efficient evolutionary computation methods.
Original language | English |
---|---|
Title of host publication | 2007 IEEE Congress on Evolutionary Computation, CEC 2007 |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 2909-2916 |
Number of pages | 8 |
ISBN (Print) | 1424413400, 9781424413409 |
DOIs | |
Publication status | Published - 2007 |
Externally published | Yes |
Event | IEEE Congress on Evolutionary Computation 2007 - Singapore, Singapore Duration: 25 Sept 2007 → 28 Sept 2007 https://ieeexplore.ieee.org/xpl/conhome/4424445/proceeding (Proceedings) |
Conference
Conference | IEEE Congress on Evolutionary Computation 2007 |
---|---|
Abbreviated title | IEEE CEC 2007 |
Country/Territory | Singapore |
City | Singapore |
Period | 25/09/07 → 28/09/07 |
Internet address |
Keywords
- Genetic algorithms
- Measurement-based load modeling
- Power system stability