Projects per year
Abstract
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of “perfect” models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models’ ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain ~50% of the total variance of the discrepancies between the observation and individual models’ ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
Original language | English |
---|---|
Pages (from-to) | 1335-1351 |
Number of pages | 17 |
Journal | Climate Dynamics |
Volume | 50 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - Feb 2018 |
Keywords
- Air–sea interactions
- CMIP5 simulations
- Common model biases
- Inter-basin influence
- Pacific cooling trend
Projects
- 2 Finished
-
Beyond the linear dynamics of the El Nino Southern Oscillation
Dommenget, D., Hendon, H., Latif, M. & Power, S.
Australian Research Council (ARC)
3/01/12 → 31/12/17
Project: Research
-
ARC Centre of Excellence for Climate System Science
Jakob, C., Alexander, L., Bindoff, N., Dommenget, D., England, M. H., Hogg, A., Karoly, D. J., Lane, T. P., Lynch, A., Pitman, A., Roderick, M., Sherwood, S., Steffen, W., Strutton, P., Bony, S., Frederiksen, C., Grabowski, W., Griffies, S., Gupta, H., Hendon, H., Hirst, A., Matear, R., May, P., Peters-Lidard, C., Power, S., Steenman-Clark, L., Stott, P., Sutton, R., Wang, Y. & Whetton, P.
Australian Research Council (ARC)
1/01/11 → 30/06/18
Project: Research