Abstract
Matrix metalloproteinases (MMP) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness over time. We investigated the effect of surface functionalisation on the stability of the pSi surface and evaluated sensing performance. We successfully demonstrated MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.
| Original language | English |
|---|---|
| Pages (from-to) | 1428-1434 |
| Number of pages | 7 |
| Journal | Australian Journal of Chemistry |
| Volume | 66 |
| Issue number | 11 |
| DOIs | |
| Publication status | Published - 2013 |
| Externally published | Yes |